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A Lagrangian and Hamiltonian formulation of light propagation in layered nematic liquid crystals
is presented in the general case of a plane wave for any incidence angle and polarization. The result-
ing Lagrange or Hamilton equations reproduce both Maxwell’s equations and the torque equations
governing the molecular director equilibrium under light action. The theory includes nonlinear op-
tical effects due to molecular reorientation. The exact formulation is then reduced to a simpler one
using the generalized geometric-optics approximation. The corresponding approximate expression

for the optical torque is also derived.

PACS number(s): 42.70.Df, 42.15.—i, 42.65.Vh, 42.81.Gs

I. INTRODUCTION

Light propagation in birefringent inhomogeneous me-
dia is a difficult problem even in the case of plane in-
cident wave and layered media. Berreman proposed to
use a 4 X 4 matrix formalism equivalent to Maxwell’s
equations [1]. Oldano showed that the Berreman 4 x 4
matrix equation can be reduced to a simpler 2 X 2 matrix
equation using the generalized geometric-optics approx-
imation (GGOA) [2]. Berreman’s equation has a form
similar to Schrédinger’s equation, so that one can use well
known tools of quantum mechanics such as, for instance,
perturbative approaches or eigenmode expansions.

In the case of light propagation in liquid crystalline
media, the problem may become nonlinear, due to the
torque exerted by the optical beam on the molecules of
the medium. A Lagrangian or Hamiltonian formulation
is then recommended, because nonlinearities can be han-
dled in a natural way, and the powerful tools of analytic
mechanics can be used to find conserved quantities, to
formulate adiabatic theorems, and so on. This approach
was proved to be possible in the case of normal incidence
and in the GGOA [3]. In this paper we show that re-
duction to a Lagrangian problem is also possible in the
case of oblique incidence, both for the exact Maxwell and
torque equations and those obtained in the GGOA.

II. THE EXACT EQUATIONS

Let us consider a monochromatic plane wave propagat-
ing in a transparent anisotropic optical medium, strati-
fied along the z direction. The electric and magnetic field
components of the wave all share a common phase factor
exp(—iwt + ikyx + ikyy), describing the time and trans-
verse space dependence. Henceforth this phase factor will
be omitted, so that all the fields are taken to depend on
the z coordinate only. Maxwell’s equations can then be
cast in the form of the Euler-Lagrange equations (with
¢ = dqi/dz)

d oL°  oL° _ o
dz 8q't  8qi

(i=1,...,4), (1)
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where the four generalized coordinates g are related to
the real part of the field components of the wave by

q={q}_\/8_7rk_0

and L°(q,q’, 2) is the optical Lagrangian, given by

Re(E.,Ey, Hy, —H,) (2)

1 peny x, ko ma
L°(g,¢',2) = ——¢dTGS  (2)Gq — 24¢T5(2)a, (3)
T 2

where G is the matrix

0010

. 0001 :

G=11000 (4)
0100

and S is a symmetric 4 X 4 matrix characterizing the
medium. In the case of transparent, nonmagnetic, bire-
fringent media the matrix S is given by

g:x::c - :8; gzy + ﬁwﬁy ‘/B:x:’:_:f _ﬂyi‘ff
~ ~ &€ €
- Eoy + Baly Eyy — ﬂ: —ﬁz;y; —ﬂyzﬁ
S(2)=] _pge  _gme - B _B:B |
T ez Te, €22 5;52
[ €y= B=B
Ao R TR o
(5)
where
2
~ >
€xx = Ega — == )
EZZ
~ EgzE
fay =Eay — — 1, (6)
EZZ
2
1>
~ yz
£ =& bt .
vy vy €22

In Eq. (5), B, and B, are the wave vector transverse com-
ponents in units of kg = w/c. The &’s are the components
of the dielectric tensor, that for uniaxial media is related
to the local direction n of the optical axis by

€o+ €anl  Eqnany  Eqngn,
e(z) = €aNaNy €0+ €anZ  Eqnyn, , (7
EqMgM, EaNyN,; Eo + sanz
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where €, = €. — &, is the dielectric anisotropy, and sum of the optical Lagrangian L° given above and of the
€o = nZ%, g, = n?, where n, and n. are the ordinary Frank elastic free energy L€ of the liquid crystal [4]:

and extraordinary indices, respectively.

Once the Euler-Lagrange Egs. (1) are solved, the elec-
tric and magnetic fields of the optical wave in the medium
can be completely evaluated because the imaginary parts
of the field components along = and y are related to the
conjugate momenta

p=0L°/8q = Elaég_léq' (8)

according to
1
p={p:} = —“m

and the z components are given by

Hz = ﬂa:Ey - IByE:ca

Im(Hy,—Hm, E:z:;Ey)7 (9)

(10)

1
E, = —_’—(Eszw + syZEy - ’ByHm + ’BmHy)

zz

The equivalence between Egs. (1) and Maxwell’s equa-
tions is best made by observing that Hamilton’s equa-
tions derived from the Hamiltonian

Ho(p0,2) = 2 [P G3(Gp +a"5()d) (1)

associated to L° reduce to Berreman’s equation

av -
i tkoB(2)9, (12)

where Berreman’s wave function ¥ and matrix B are
related to our generalized coordinates and momenta and
matrix S by

U = RV 87!']510 é’l(q — iép), (13)
B=G'GEG, (14)

with matrix G, given by

1000
~ 0010
Gi=lo10o0
0001
Both G matrices are idempotent: G2 = G2 = 1.

When the medium is a liquid crystal, the direction 7 of
the local optical axis is along the molecular director and
may be different from point to point in the sample. In
the plane-wave approximation we assume n = n(z) only.
Moreover, n can be changed by the optical field itself, be-
cause of the optical reorientation. The whole process be-
comes nonlinear and Maxwell’s equations must be solved
together with the torque equations governing the optical
reorientation in the material. Now, both Maxwell’s and
torque equations can be obtained, in the plane-wave ap-
proximation, from the total Lagrangian L given by the

L=L°+1I°. (16)

This important result is based on the fact that after in-
sertion of Egs. (7) into Eq. (5) and Eq. (3), the optical
part L° of the Lagrangian becomes no longer explicitly
dependent on z, but we have instead

L° = L°(q,q',n) (17)
and that we have also
8L° OH° ko [ 1085 ~ 98
o = —— = — —G —_—
h on on 2 (p G6n ptaq anq
= c2Re[(n- E")E], (18)

where E = (E,, E,, E.) is the optical electric field. Us-
ing the last equation, we see that the Euler-Lagrange
equations for the total Lagrangian L given by Eq. (16)
reduce, on one side, to the Euler-Lagrange equations of
L°, which are equivalent to Maxwell’s equations, and, on
the other side, to the torque equations

n x (h® + h°) =0, (19)

where h® = (d/dz)(0L°/On’) — OL¢/On is the elastic
molecular field derived from Le.

Equations (19) apply to steady state only and, to-
gether with Maxwell’s equations, yield the distribution
of the optical and director fields n(z), E(z), H(z) in the
medium. In nonstationary states a viscous torque T°
must be added on the left side of Eq. (19), depending on
n and its time derivative 7 = On/dt. In the simplest
cases the viscous torque is given by ¥ = —vy(n X n),
where v is a viscosity coefficient.

A. Conservation laws

The Lagrangian (or Hamiltonian) formulation permits
us to obtain conservation laws from Noéther’s theorems.

The total Lagrangian L does not depend on the z co-
ordinate explicitly; therefore the total Hamiltonian H
is constant along the z axis. In the case of normal inci-
dence, H is equal to the sum of the elastic free energy and
electromagnetic energy density and therefore this conser-
vation law reduces to the conservation of the total energy
density along the medium [3].

The total Hamiltonian H is invariant under the canon-
ical transformation

g — ¢ cosy — Gp siny ,
(20)
p — p cosy + éq sinvy ,

with arbitrary parameter -y, which implies the conserva-
tion law

5. = c]26—0(19%31) +¢7Gq) = const. (21)
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(The generating function of this transformation is
F(4,3) = 5357 (¢Gq + §G) cosy — gGg), where g, p are
the new coordinates and momenta.) From Egs. (2) and
(9) we see that the conserved quantity S, is the Poynting
vector z component of the optical wave.

Finally the total Lagrangian L is invariant under rota-
tion of the laboratory frame around the z axis. As is well
known, this rotational symmetry leads to the conserva-
tion of the z component of the total angular momentum
of the whole system (radiation field plus medium). This
conservation law can be written out in the divergence
form

div(Im™ee 41t 4 127%) = 0, (22)

where I7*¢ is the flux of z component of the mechanical
angular momentum carried on by the elastic forces inside

the liquid crystal. The only component of I7*°¢ entering
Eq. (22) is the z component, given by
l';'r;ec = -“[kzz + (k33 — kzz)ﬂi](n X 'n')z. (23)

it and 127 are the fluxes of z component of the intrinsic
and orbital parts of the angular momentum carried on by
the radiation field, given by (2z is the unit vector along
the positive z axis)

nt __ 1 *
= —SWkOIm[H x (2 x E)],
(24)
S
orb __ . ot
1% =[(r x k) z]w,

where k = (ks,ky,0) and S = ¢/87 Re(E* x H) is the
average Poynting vector of the optical wave.

The divergence of the flux of angular momentum 2z
component must be equal to minus the z component of
the torque acting on the unit volume. Equation (22) is
therefore equivalent to the z component of the torque
balance Eq. (19), as can be checked also by direct calcu-
lation. In the case of normal incidence, where the orbital
part of the radiation angular momentum vanishes, the
angular momentum conservation law assumes the sim-
pler form

Imee 4 int — const. (25)

We notice moreover that the component I:%¢ of the flux
1"t is related to our generalized coordinates and mo-
menta by the simple relationship

lint = pTlq, (26)
where L is the skewsymmetric matrix

0
-1

e
Il

1 0 0
0 0 0
0 0 0 1 (27)
0 0-10
Definitions (24) of the orbital and intrinsic angular mo-

mentum of the light were already reported by Santamato
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and co-workers using a different approach [5]. In particu-
lar, from the definition of the orbital angular momentum
of light, the picture emerges that inside a birefringent
medium photons carry angular momentum » x %k, and
hence linear momentum %k along the k direction, but
they move along the ray direction, i.e., the direction of
the energy flux S [5].

B. Boundary conditions

In order to have a well defined mathematical problem,
the Euler-Lagrange Eqs. (1) for the optical field must
be supplemented with appropriate boundary conditions.
(For the reorientational part, the boundary conditions
are provided by the anchoring conditions of the liquid
crystal molecular director at the sample walls, and will
not be discussed here.) To be specific, we assume that the
medium is enclosed between two external homogeneous
isotropic media having refractive indices n; and n, and
located at planes z = 0 and z = L, respectively. With-
out loss of generality we may take the z,z plane as the
incidence plane so that §, = 0 and B, = § = n; sina,
a being the incidence angle in the first medium. The
matrix S(z) assumes then the simpler form

émm émy - 'iﬁ‘ 0
. oy Gy —PB2 —B2 0
5(z) = —[S== g%z ] _ eﬁ’ 0 (28)
€2z €zz €2z
0 0 0 1
(0<z<L).

Maxwell’s equations in the external media lead to the
following relationships for the optical field components
of the incident, reflected, and transmitted waves:

@ = @5 =74, Psy=mpi Py =p5
Yo 0y Y T LY Y Y — ¥
q§ = /'Ygi‘ha q% = I'Y::‘ha Ptz = I'Ygipm ptl = I'thpsa
94 = Yy92» 93 = Yzq91» P2 = VyP4»  P1 = V2P3»
(29)
where

Ye =M1/ cosa, Yy = N1 COSQ,
(30)
v, = na/ cosa’, vy = M2 cosa’,
and o' is related to the incidence angle a by Snell’s re-
lation ny sina’ = n; sina. In Egs. (29) the superscripts
i, 7, t refer to the incident, reflected, and transmitted
wave, respectively, and the field components of all waves
are related to their respective p,q by Eags. (2) and (9).
The optical field in the first medium is the sum of the
incident and reflected fields, so that at z = 0 we have

¢:(0) = ¢} +4qf, p:i(0) =p}+p}
(i=1,...,4) . (31)

In the last medium there is only the transmitted wave,
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so that at z = L we have

a(L) = qf, pi(L) =7}

(i=1,...,4) . (32)

Combining Egs. (29), (31), and (32), we obtain the fol-
lowing homogeneous linear boundary conditions at z =

L:

p2(L) — vypa(L) =0,
p1(L) — v,p3(L) =0,
(33)
qa(L) — v,92(L) = 0,
a3(L) = v.91(L) =0,

and the following inhomogeneous linear boundary condi-
tions at z = 0:

p2(0) + 74p4(0) = 2vyp5,
P1(0) + 72p3(0) = 2v.p},
(34)
24(0) + 71y q2(0) = 2,43,
23(0) + 7291 (0) = 2v.4:.

Once the field of the incident wave is given at z = 0, the
quantities p, g* are fixed and Egs. (34) and (35) provide
the set of boundary conditions required to solve Egs. (1).
Once the solution ¢;(2),p;(z) (¢ =1,...,4) is found, the
transmitted fields at z = L are obtained directly from
the values of p and ¢ at z = L, and the reflected fields
are obtained by Egs. (31).

The same formalism can be used also to find the pos-
sible guided modes of the system. In this case there is
no incident wave and all p?,¢* are zero. The boundary
conditions are then homogeneous at both boundaries and
the scale of the optical field remains undetermined.

III. THE GEOMETRIC-OPTICS
APPROXIMATION

Our Lagrangian approach provides an appropriate
framework in which to find the expression of the equa-
tions governing the light propagation and the molecular
reorientation in the GGOA, which is adequate in most
practical situations, where the length scale over which
the molecular orientation changes appreciably is much
longer than the optical wavelength. As we shall see in
the following sections, the equations for the optical field
may be reduced in the GGOA to a set of equations for
the light polarization state only, where the intensity S,
of the incident wave enters the torque equations as a
parameter. We get therefore a drastic reduction of the
electromagnetic degrees of freedom from four (the real
parts of the fields F,, E,, H,, Hy) to only one (the an-
gle ¢ yielding the orientation of the light polarization
ellipse). Our equations for the light polarization evolu-
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tion are equivalent to those found by Oldano and Allia et
al. [2,6], while our expressions for the optical torque on
the liquid crystal were not deduced before and represent
a not trivial extension of those found by Santamato et
al. for the case of normal incidence [3].

A. The light equations

Following Refs. [2,6], we first solve the eigenvalue prob-
lem
GSM = MA, (35)
where M is a 4 X 4 matrix whose columns are the eigen-
vector of GS and A is the diagonal matrix formed by the
corresponding eigenvalues. The eigenvector normaliza-
tion is chosen so that
MTGM = N, (36)
where N =diag(1,1,-1,-1). The eigenvalues of GS are the
same as the eigenvalues of Berreman’s matrix B, because
GS and B are related by the similarity transformation
(14). Therefore the eigenvalues are the z components of
the wave vectors (in units of ko) of the extraordinary (e)
and ordinary (o) waves propagating in the forward (+)
and backward (—) directions. We assume the eigenvec-
tors are ordered so that A =diag(AF, A}, A2, A).
We then consider the coordinate transformation

§g=MT1q, (37)

where ¢ are the new coordinates. In the new coordinates
the optical Lagrangian becomes

L° = 511?0 7 +VgTNAH G +Vq) - %‘-’—qTNAq, (38)
where
V=M'M =B n, (39)
and B = M~'9M /dn. Equation (21) becomes
S, = C2ﬁ (ﬁTNﬁ + QTNq") = const, (40)
where
p= kioﬁi\‘l(q’ +Vg =M"p (41)

are the new momenta. We notice that, when expressed
in the new coordinates and momenta, S, becomes an al-
gebraic sum of squares, where positive terms correspond
to waves propagating in the forward direction, while neg-
ative terms correspond to waves propagating in the back-
ward direction.

The GGOA approximation is made simply by retaining
only the first two coordinates §; and g and momenta p;
and P, that are associated to the waves propagating in
the forward direction, and the upper left 2 x 2 blocks
V11, N11,A1; of matrices V, N, A, appearing in Eqgs. (38)



52 LAGRANGIAN APPROACH TO LIGHT PROPAGATION IN . ..

and (40) [2,6]. This leads to the GGOA total Lagrangian

(2 — ”‘il)z]

1 = ~.)2
L[GGOA _ [(‘11 +vqz) "

2kq Ae Ao
ko (\ 2 2
—“2* (/\e(h + /\0‘12) y (42)
where A\, = AF, A, = A}, and v = vy = —vy;, where Vg5
are the elements of the matrix V defined by Eq. (39). It
is also useful to introduce the vector b = b, = —bsy, b;;

being the elements of the matrix vector B, so that v =
b-n'/. In the GGOA, the Poynting vector conservation
law is given by

k
§GGOA _ 22_0 [ﬁf +P2+3 + q%] = const. (43)

The Hamiltonian associated with LEGOA jg

k
HESOM = 200.(5% + @2) + Ao} + )]

—v(P1G2 — P2G1)- (44)

Introducing the Jones vector J =_(j1, J2), with compo-
nents J1 = v/ 87Tk0(ql - Zﬁl) and J2 =V 87Tk0((72 - 1:]32),

one can easily check that Hamilton’s equations associated
q

to HEGOA may be written as
J'=QJ, (45)
where
= o= ~ ikode —v
Q = tkoAy1 — V11 = ( Z € iko, ) . (46)

These equations are the same as reported in Refs.
[2,6] and describe the evolution of the light polar-
ization in the medium in the local frame formed by
the principal axes of the matrix GS. Equations
(45) have the first integral |J;|? + |J2|2 = 167(S./c)
corresponding to the conservation of the power flux
along the z axis. Therefore, introducing the lo-
cal Stokes unit vector 3 = (51,52,53) = (|J1|*> —
|J2|2, 2Re(J1J3), 2Im(J1J3)) /(|J1]2 + |J2]?), Eags. (45)
may be written out in the precession form

3 =Qxs, (47)
where € = (koAX,0,2v) and AX = X, — A,.

Jones’s vector J and Stokes’s vector & refer to the po-
larization state in the locally rotated frame. The passage
from the fixed laboratory frame to the local one is defined
by Egs. (37) and (41). From these equations we obtain

J = My, J, (48)
where J = (E,, E,) is Jones’s vector in the fixed frame
and M, is the 2 x 2 upper-left block of M. Since we
assumed g3 = g4 = p3 = ps = 0, we have the following
useful relation connecting the components of the mag-
netic and electric field of the optical wave in the GGOA:
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(%)= (5)

These relations permit us to evaluate the optical elec-
tric and magnetic field transverse components, once the
Jones vector J (or Stokes vector ) in the local frame is
known. The longitudinal field components are then given
by Egs. (10).

B. The reduced Lagrangian

Since S, =const, Egs. (47) describe only the evolu-
tion of the light “polarization” state in the medium. We
may, in fact, further reduce the degrees of freedom from
two to only one, inserting back into the Lagrangian the
conservation law (43) as a constraint, and using as new
coordinate the angle ¢ = 1 arctan(3;/3;), formed by the
major axis of the light polarization ellipse with the z axis
of the local frame. This approach has the further advan-
tage that the incident wave power flux S, enters the final
equations as an external parameter. The new Lagrangian
is

S, N
LESOA(y,¢') = =% (koA
Ck()

+\/('¢' —v)2 + ik%A/\z cosz21/1) ,
(50)

where X = (A + Ao)/2.
The Hamiltonian corresponding to the Lagrangian (50)
is

< AX 2
HGGOA=% )\+Tcos2'¢v 1—(;&) pfb +vpy,

(51)

where p, is the momentum conjugate to ¥. It is worth
noting that the momentum p, conjugate to the ellipse
angle 9 has a simple physical meaning. We have, in fact,

S, _
Py = 333, (52)

where 33 is the ellipticity of the light polarization in the
local frame and w the optical frequency. We may then
consider py, as the negative of the z component of the
intrinsic angular momentum carried on by the light along
the laboratory z axis. A similar result was previously
reported for the case of normal incidence [3].

The Euler-Lagrange equations resulting from the re-
duced Lagrangian (50) are equivalent to Egs. (45) and
(47). The Lagrangian LGGOA  as given in Eq. (50), is
fully determined once the eigenvalues A, and )\, for the
extraordinary and ordinary waves in the forward direc-
tion as well as the quantity v are given. Taking the z, z
plane as the incidence plane, these quantities have been
calculated elsewhere [6] and are reported here:
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EtEf

Aez—mt COS¢+\/Et—(1— ),82 22 )
Ao = VeEo — G2,
v = b¢¢' + bgel,

1 sin¢g Ae
bo = Ececoﬂm (1 + :\;) )

(53)

by = —%ceco [Ae + Ao — Bcot @ cose (1 + %)] ,

where

B2 cos?¢

Ce = [Ae (1 —
€o
: ) 1
(1—ﬂ—+ )+,82cot203£] ,
€o €o €o

Co = [/\,, cos?¢ + ;5 sin®¢ — 208 cospcot §

o

) — B cos¢ cot 8

o™

_1
+ﬂ2 cot?97 2
Ao ’
€t = Co
T w sin?’
Ef =€, sin2¢ + &, cos?¢,
sinf cosf
my = ﬁﬁ“——:—z’“a
1— p sin“@

8 =-2 =n; sina
ko

In these equations 6 and ¢ are the polar angles of the
molecular director n, a is the beam incidence angle, and
p=1-—¢,/ec, €. and &, being the principal values of
the material dielectric tensor at the optical frequency.
We notice that, unlike the exact optical Lagrangian L°,
the GGOA Lagrangian LEGOA depends, through v, on
the derivatives 6’ and ¢’ of the director polar angles. [A
lower order approximation, called the geometric-optics
approximation (GOA), is often used in which the quan-
tity v containing the spatial derivatives of the molecular
director is neglected. To neglect v is, however, impossible
for particular directions of the optical axis, where v may
become infinite.]

C. The boundary conditions in the GGOA

The boundary conditions are fixed by the anchoring
conditions of the molecular director at the walls and
by the intensity, polarization, and incidence angle of
the incoming optical wave. It should be stressed, how-
ever, that the GGOA is no longer applicable at bound-
aries, where the refractive index is discontinuous. The
relevant boundary conditions can be obtained eliminat-
ing the magnetic field components from Eqs. (34) and
Eqgs. (49), evaluated at z = 0. Thus we find the following
relationship between the Jones vector J(0) at z = 0 and
the Jones vector J* of the incident wave (the latter taken
in the reference frame having the z axis along the beam
propagation direction):
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J(0) = Z(0)J?, (55)
where Z (0) is the 2x2 matrix given by
~ - ~ 0 -1
Z(0) = 2,y [M21(0)(M11) L0) + ( 0 )]
1 0
X (0 cosa ) ) (56)

Relation (55) permits us to evaluate the Jones vector
at the input plane z = 0 from the Jones vector of the
incident wave. The Jones vector J in the local frame is
then obtained from Eq. (48) at z = 0.

D. The optical torque in the GGOA

The more direct way to evaluate the optical torque is
by expressing Eq. (18) in terms of the local frame coor-
dinates and momenta p,§. We thus obtain

h® = ~(pTNANp+q Ag), (57)
where we introduced the 4 x 4 matrix vector
a8
=MTZM.
n (58)
Derivation of Eq. (35) with respect to n yields
A=N<%+m_m). (59)
on

The GGOA expression of h° is then obtained by retaining
only the terms containing p;, g; with ¢ = 1,2 in Eq. (57).
Using as before Jones’s vector and Stokes’s parameters,
we get

1 -~ -
hCGCGOA = —J1A),J 60
167" MU (60)
where ;111 denotes the upper left 2 x 2 block of A. Using
Stokes’s parameters, Eq. (60) can be rewritten as

hGGOA — (61)

S. [0 _ _
% [%(1 + S]_) - 2AAsz:| .
If one starts directly from the GGOA Lagrangian (42) or

(50) a slightly different expression is found for ASGGOA:

| GGOA _ d (aLGGOA) _ §LGGoA
dz on' on
= (61) + he=tre, (62)
where the components of the extra term are
hgotre = (ﬁi) 23: (abﬂ' ’%") n'-] 53 (63)
* ckq = on; On; 7

(i =1,2,3).
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This extra term in the optical contribution to the torque
is very small, because it is proportional to n’/ko, but it
is needed in order to preserve the Lagrangian character
of the theory in passing to the GGOA. We may consider
it as a small contribution from higher order terms in the
GGOA.

Using the relations (53), we may express as a
function of the director polar angles 6 and ¢. In the spe-
cial cases of normal incidence and elliptical polarization
and of oblique incidence and p polarization, hGGOA re-
duces to the expressions which have already appeared in
the literature [3,7].

hGGOA

IV. FINAL COMMENTS

We have shown how the equation governing the mo-
tion of the molecular director and the change of the light
polarization in the medium can be derived by a unique
Lagrangian even in the GGOA, for any incidence angle
and polarization. The Euler-Lagrange equation obtained
by L(%,9';n,n') = L + LEGOA | with LESO4 given by
Eq. (50) may also be used for numerical integration in
the GGOA. Problems may arise, however, in the nu-
merical integration of the light polarization Egs. (47) [or
Eqgs. (45)] in the local frame, because, for particular di-
rections of the optical axis n, the quantity v appearing in
these equations may become undetermined and even infi-
nite. We can see this by evaluating the components v;; of
the matrix V, defined by Eq. (39), from Eq. (59). After
scalar multiplication of Eq. (59) by n’', we get a matrix
equation that can be solved explicitly with respect to v;;,
yielding

fij

v;; =0, (iaj=1a"'74)’ (64)
where f;; (i, =1,...,4) are the elements of the matrix
F=NA.n'=NMTS'M (65)

and §' = d.‘;'/dz. We see therefore that v = vy, is unde-
termined when the eigenvalues A; and A2 become degen-
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erate. This happens, indeed, when the direction n of the
local optical axis is parallel to the wave vector, i.e., when
ng = B/No,ny = 0,n, = Ay/n,. For direction of the opti-
cal axis close to the degeneration direction, v may be very
large, contrarily to what is supposed in the GGOA. It is
evident that the origin of this problem is not physical,
because the spatial distribution of the refractive index in
the medium is really smooth, but it is due to the fact
that the local frame where Egs. (45) and (47) are evalu-
ated is ill defined in the degenerate eigenvalue case. We
expect therefore that any singularity could be removed
simply by solving the equations governing the evolution
of the light polarization in the fixed laboratory frame,
rather than in the local frame. Thus using transforma-
tions (48) to return back to the fixed frame Jones vector
J = (E,, Ey), Eq. (45) is changed to

J=QJ, (66)

where
Q= Mn[ikoj\u — Vi + (Mll)_lM{1](M1i)—1~ (67)

The divergency occurring in Vi1 is then cancelled out,
because from M' = MV it follows that

Mj, = My Vs + M1y Vi, (68)
and hence we may rewrite Q as
Q = ikoMy1Ay1 (M11) ™Y + Mo Var (My1) 7L (69)

Since the eigenvectors in the forward direction are posi-
tive, while the eigenvectors in the backward direction are
negative, the elements of the 2 x 2 matrix V2; in Eq. (69)
are always well determined by Eq. (64).
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